
1

IPN Progress Report 42-187  •  November 15, 2011

Coding with Side Information for  
Radiation-Tolerant Memory Devices

Euiseok Hwang,* Seungjune Jeon,* Rohit Negi,* B. V. K. Vijaya Kumar,*  
and Michael K. Cheng†

* Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.

† Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of  
Technology, under a contract with the National Aeronautics and Space Administration. © 2011. All rights reserved.

abstract. — Memory devices aboard spacecraft experience radiation-induced errors either 
in the form of temporary upsets (soft errors) or permanent defects (hard or stuck-at errors). 
Error-correcting codes (ECCs) are used to recover memory content from errors where defec-
tive cells are either regarded as erasures by the decoder or entire blocks containing defective 
cells are marked as unusable. In this article, alternative coding schemes are investigated for 
memory devices in space, where the encoder is provided with the locations of the defective 
cells, denoted by side information. This coding approach has the potential to improve the 
overall storage capacity of memory devices, since the information theoretic capacity of a 
channel where side information is only available at the encoder is the same as the capacity 
where side information is available at both the encoder and decoder. Spacecraft memory 
controllers typically scrub memory devices periodically for errors. Partial side information 
can be obtained during this scrubbing process by comparing the ECC decoder output with 
its input and thereby avoid the need for additional cell tests or storage overhead. In be-
tween scrubbings, the encoder can use this partial side information to account for perma-
nent defects to improve reliability or to increase the storage capacity of onboard memory 
devices. In order to achieve performance gains for practical memory systems, several coding 
schemes that adaptively incorporate the codeword with the known side information are 
proposed in this article. The proposed coding schemes are evaluated by numerical simula-
tions on a memory channel model characterized by soft and hard errors. Simulation results 
show that while coding with complete side information at the encoder offers the most 
performance gain compared to when coding without side information is used, coding with 
partial side information can close the gap between the optimal and current approach with-
out incurring much additional overhead.

I. Introduction

Memory devices aboard spacecraft are susceptible to radiation-induced errors. Some mem-
ory cells will only experience temporary bit reversals called soft errors. But if the radiation 
dose is strong enough, a memory cell can become permanently damaged and remain stuck 
at a fixed value [1]. The radiation dosage is not uniform in space and is very heavy during 
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periods of sunspots or in certain regions such as near Jupiter. To protect against radiation-
induced errors, memory controllers aboard spacecraft periodically “scrub” memory devices 
for errors and update memory contents with the error-correcting code (ECC) decoder 
output [2,3]. By scrubbing a memory device, soft errors can be removed by rewriting the 
cells; however, stuck-at bits remain and accumulate over time. In legacy memory systems, 
the defective cells are treated simply as soft errors, which makes error correction inefficient 
because stuck-at bits cannot be corrected. Alternatively, an entire memory block can be 
marked unusable even if only a few cells in the block are defective. Although these ap-
proaches have low overhead, they do not make the best use of all available storage area. If 
the location of the stuck-at bits, denoted by side information, is available at the decoder, 
the stuck-at bits can be set as erasures to make ECC decoding most efficient [4–6]. 

In this article, we take a look at another coding approach that takes into account the loca-
tion of the stuck-at bits during encoding. We model error behavior on a memory device 
as a channel with state-dependent error transitions and analyze the error performance 
when side information is available at the encoder. We refer to our problem setup as chan-
nel coding with side information at the encoder (CSIE). Similar problems in the area of 
coding with side information at the transmitter have been studied [7–9]. Figure 1 shows 
a block diagram of channel coding problems with side information, where S  represents 
side information related to cell states, and Se and Sd are side information available at the 
encoder and decoder, respectively. W, X, and Y  represent the message, the codeword, and 
the received word. tW denotes the message estimate. Theoretical storage capacity for CSIE 
Se = S and Sd = 4) has been shown to be equal to the capacity of a channel with side infor-
mation available at both the encoder and decoder (Se = Sd = S ) [10,11]. Side information 
on the locations of the stuck-at bits can be made available to the encoder through repeated 
reading and writing of a constant pattern and its complement to a memory block without 
requiring additional storage. CSIE schemes based on binning or partitioning the code-
words have been proposed [12,13]. However, the analyses were theoretical and the devised 
schemes were not practical for implementation. In the following sections, we propose two 
CSIE schemes amenable to practical implementation. To avoid the additional overhead of 
identifying stuck-at bits, we also propose to obtain partial side information by comparing 
the ECC decoder output with the input during every memory scrubbing. The side informa-
tion extracted from the decoder is not complete because not all corrected errors are stuck-at 
errors and not all stuck-at errors are identified. Since stuck-at errors accumulate over time, 
the decoder-identified errors will be dominated by hard errors, and therefore we expect to 
obtain performance gain even when the side information is not complete [14]. Based on a 
memory channel model developed in [4] that accounts for radiation effects, we evaluate the 
performance of CSIE schemes when applied to memory devices in a radiation environment. 
Results show that CSIE can extend the lifetime of memory devices in space. Moreover, 
coding with decoder-provided partial side information also shows benefits when compared 
to coding without information while incurring little overhead. Preliminary investigation 
results of CSIE for memory systems were presented by the authors in [14].

The rest of the article is organized as follows. In Section II, we provide a background on 
channel modeling of radiation effects in space and coding with side information. In Sec-
tions III and IV, we present our CSIE scheme and evaluate the performance of various CSIE 
approaches. In Section V, we summarize our findings.

(
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Figure 1. Coding with channel side information. S  is the side information observed at the channel; Se is the 

side information available at the encoder; Sd  is the side information available at the decoder. A message W is 

encoded and mapped to a codeword X. After the channel the transmitted codeword becomes Y and is decoded to 

the estimated message tW .

II. Channel Coding with Side Information

A. Channel Model

A state-dependent channel model for memory systems in a space radiation environment is 
shown in Figure 2. Hard and soft error probabilities over a time period T  are defined as [4]

q e1T
Th= - m-

/p e1 22
T

Ts= - m-_ i

where mh and ms are hard and soft error rates (errors/bit/day). In this model, all hard errors 
are assumed to be either stuck at 0 or stuck at 1 with equal probability. A cell could be in 
one of three states s = a,1,0# -_ i: normal, stuck at 1, or stuck at 0, and each has a probabil-
ity of  1 - qT , qT /2, and qT /2, respectively. The channel output, y, of a cell depends on its 
input x and state s, and is defined as
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where z ! 0,1# - is a soft error with ( 1 )Prp z sT a= = = . 

B. Theoretical Capacity of Channel Coding With Side Information

For state-dependent memory channels, the channel capacities with no side information 
and with complete side information at the encoder and decoder are given as Cmin  and Cmax  
in [11]. Cmin  is based on the binary symmetric channel (BSC) with cross-over probability 
(1 - qT)pT + qT /2, while Cmax  is based on the binary erasure and error channel (BEEC) 
model with erasure probability qT  and error probability (1 - qT)pT . The capacity Cenc of the 
channel where only the encoder is provided with complete side information (Se = S,Sd = 4) 
was shown to be equal to Cmax  in [11]. 

In memory devices where the controller periodically scrubs for errors, the ECC decoder can 
provide partial side information to the encoder for use to improve the overall error per-
formance. We can assume that the bit positions where error correction have occurred are 

(1)

(2)

(3)

Encoder Channel Decoder

Channel
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W X Y tW
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the locations of hard errors. This assumption is not entirely correct because not all errors 
are hard errors and those stuck-at bits that agree with the information are not identified as 
hard errors. Therefore, comparing the decoder output and input only provides partial and 
not complete side information. However, hard errors will accumulate over time to become 
the dominate error source, thereby making our assumption relatively accurate. The capac-
ity of channels with partial side information is unknown in general [15]; however, we can 
compute a tight upper bound. The sequence of obtaining partial side information from the 
decoder and forwarding this information to the encoder during a scrubbing period is illus-
trated in Figure 3.

Figure 2. A state-dependent channel model for memory devices exposed to space radiation. Over a time period T , 

the hard (permanent) error probability is qT  and the soft (temporary) error probability is pT .
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Figure 3. Memory scrubbing with partial side information at the encoder with a  

memory scrubbing period of duration Ts .
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We can decompose this “memory scrubbing channel” into a set of binary asymmetric 
channels (BACs), each with transition probabilities that depend on the side information 
provided by comparing the decoder output to its input. We develop this modified state-de-
pendent channel, shown in Figure 4, by defining a state descriptor lS  that can take on one 
of four possible states {Y tX = 11,10,01,00}  depending on the action of the decoder. The 
input to the decoder is represented by Y  and output by tX . So lS = {11} or {00} indicates 
that a bit remained the same before and after the decoder while lS = {10} or {01} indicates 
that the bit changed. Again, we assumed that the number of errors are within the correc-
tion bound of the ECC. Two possible scenarios lead to a bit remaining constant before and 
after the decoder. One occurs when the bit is not stuck at a value and does not experience 
any error, and this event occurs with a probability of rT (1 - pT), where rT = (1 - qT). The 
other occurs when the bit is stuck at 1 or 0, and this event occurs with a probability of qT /2  
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Two possible scenarios lead to a bit being changed after decoding. One occurs when the 
bit is not stuck at a value but experiences an error, and this event occurs with a probability 
of rT pT . The other occurs when the bit becomes stuck at a value before decoding, and this 
event occurs with a probability of qT /2. From this description, we can fill in the Pr( lS ) 
column of Table 1. Next, we considered the channel transitions. Without loss of generality, 
we assumed that the channel was in state lS = {11} and a “1” was written to this bit posi-
tion, but this bit became a “0” on the memory device. This scenario, marked by transition 
p10, occurs only when the bit was not stuck at 1 and the bit experienced a soft error and 
occurs with probability [(rT (1 - pT)/2)/ Pr( lS = {11})]pT . Continuing with the same state 
lS = {11}, we considered the scenario where a “0” was written to this bit location but the 

bit became a “1” on the memory device. This event, marked by transition p01, occurs when 
the bit was stuck at 1 or when the bit was not stuck at 1 and experienced a soft error, and 
occurs with probability [(qT /4 Pr( lS = {11})] + [(rT (1 - pT)/2)/ Pr( lS = {11})]pT . By similar 
reasoning, we can fill out the remaining entries in Table 1.

Figure 4. A binary asymmetric channel (BAC) model for the modified states { lS }.  

The state transition probabilities are listed in Table 1.

1 1

0 0

X Y1 - p10
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Table 1. Transition probabilities for the state-dependent channel model illustrated in Figure 4. There are  

four possible states and the crossover probabilities vary depending on the channel state.
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When there is no side information available at either the encoder or the decoder, the modi-
fied channel is equivalent to the original channel of Figure 2 and the channel capacities are 
equivalent; i.e., Cmin

{ lS } = Cmin. With complete side information available at both the encoder 
and the decoder, the capacity of the modified channel, denoted by Cmax

{ lS }, can be computed 
as
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The theoretical capacity of the modified channel with partial side information at the en-
coder is upper bounded by Cmax

{ lS }. To compare the channel capacities for specific error rate 
parameters, we fixed the soft error probability at pT = 10-6, varied the hard error probabil-
ity in the range of 10-4 # qT # 10-1, and plotted the capacity curves in Figure 5. The curves 
Cmax  and Cmin  are the channel capacities for the original channel of Figure 2 when complete 
side information is available at the encoder and when no side information is available at 
all. The Cmax

{ lS } curve is the upper bound capacity of the modified channel with complete side 
information available at the encoder. Thus, the capacity of the original channel when only 
partial side information is available at the encoder is somewhere in between the Cmax

{ lS } and 

Cmin  curves.

(4)

Figure 5. Channel capacities when coding with and without side information.  

The soft error probability pT  is fixed at 10–6.
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III. Coding Schemes Using Side Information at the Encoder

Binning schemes have been used to incorporate side information and protect data against 
stuck-at errors [13,16,17]. In this approach, codewords in a code are randomly assigned 
into equal-sized bins and each bin is uniquely associated with a message. To encode a mes-
sage, the encoder selects from the bin associated with the message a codeword x such that  
x s x-%  is minimized, where s is a channel state vector and :  is the Hamming weight 

of the vector. We define x % s = u  such that
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Random binning methods provide capacity-approaching performance for channels with 
an arbitrarily long codeword [9,11]; however, they are not practical in real application. We 
propose low-complexity alternatives to code with side information, where a codeword is 
reprocessed by predefined rules to avoid errors from stuck-at defects. For a message w and a 
channel state vector s, the encoding function finds a codeword xj = fe (w,s) such that 

j jx s x=%

where a reprocessing index j  specifies a unique mapping from w to xj . The decoder undoes 
the reprocessing to obtain an index tj  and recover an estimate of the message, tw = fd (y,

tj), 
where y is a vector of the channel output in Equation (3). We introduce two CSIE schemes: 
one using linear feedback shift registers (LFSRs) in Section III.A, and the other using XOR 
functions in Section III.B. To simplify our analysis, we initially set the soft error rates to 0. 
In Section III.C, we combine CSIE with Bose-Chaudhuri-Hocquenghem (BCH) codes to  
account for both hard and soft errors.

A. An LFSR Scheme

The LFSR scheme shifts a codeword through a predefined linear feedback shift register 
until the shifted codeword agrees with the side information by satisfying Equation (6). 
The number of shifts v ! {1, ...,3} corresponds to a reprocessing index and is recorded 
together with the shifted codeword. For a given number of hard errors ls, the number 
of shifts required to find a matching codeword is a geometric random variable with pa-
rameter 1/2ls . Thus, the mean number of shifts, E [v | ls], is 2

ls and requires ls bits to rep-
resent. If we limit the maximum number of shifts to vmax, there may not exist a shifted 
codeword among the possible shifts that will satisfy Equation (6). When this occurs, the 
encoder finds a minimum distance codeword. Assuming that no soft error occurs in the 
number of shifts recorded, the probability of an encoding failure can be approximated as 

Pe,L = 1 - 1/2ls_ ivmax. The overhead for recording the number of shifts is log2 vmax_ i. The code 
rate is RL = 1 - log2 vmax_ i_ i/n, where n  is the length of a codeword.

B. An Exclusive-or (XOR) Coding Scheme

The codeword that agrees with the side information can also be found by the XOR addition 
of the message and a vector taken from a predefined set of patterns. The index associated 
with the XORed pattern is represented in binary and recorded in the parity bits of the code-
word. Selective XORing with an all-one vector [18] has been proposed as a pre-storage pro-
tection for memory systems, where the recorded data are retrieved and selectively rewritten 
with a complemented codeword that accounts for detected errors. Partitioned linear block 
codes (PLBC) [13] also use the XOR scheme with a vector minimizing x s x-%  by search-
ing for a candidate vector formed by taking linear combinations of selected rows from a 
generator matrix. Our XOR scheme uses less overhead than PLBC and can be combined 
with an outer ECC to recover from temporary errors.

The encoding method of the XOR coding scheme finds a vector a j  such that xj = w+ aj  
satisfies Equation (6). The pattern vector a j  is selected from a set of predefined vectors  

A. The code rate is RX = 1 - log2 A^ h/n , where A  is the size of A. Let Al be the set of vec-

(6)
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(8)

(10)

(7)

tors that can encode up to as many as l stuck-at errors. For any stuck-at pattern s# l with no 
more than l stuck-at errors, there exists a vector aj ! Al such that

j jw a s w al+ = +#%^ h

for all w and s# l . In order to achieve efficient encoding, we need to find a compact Al  that 
satisfies Equation (7). For l = 1, A1 = 0,1" , and the XOR coding scheme is equivalent to 
the prestorage protection scheme. For l $ 2, Al  can be obtained from the parity check ma-
trix H of a (n,k,d) linear block code (LBC) with minimum distance d = l+ 1. H by defini-
tion has l linearly independent columns and any l or fewer distinct columns taken from H 
cannot sum to 0T . Since row rank equals column rank, the submatrix with l columns of H

denoted by Hl, has at least l independent rows. Let Rl be a submatrix of Hl with l inde-
pendent rows. Rl forms an l# l full-rank matrix and spans the vector space Vl of all the 
binary l-tuples. Likewise, the set of vectors generated by summing any i rows of Hl where 

i ! {1, ..., l} will contain all the binary l-tuples across the columns. Therefore, Al  can be 
constructed by summing all possible combinations of i rows of H where i # l because  
doing so will generate all the binary l-tuples for any l columns, and we have

, , ..., ...A h h h h hl i i i i il0 0 1 0 1= + + + -" " "" , , ,,

for all ij ! 0,1, ...,n- k- 1" ,, where ij < ij+ 1  and hi j is the i j
th row vector of H. Notice that 

the construction of Al in Equation (8) leads to redundant rows, since all possible combina-
tions of rows of Hl are not necessarily distinct. The sums of r rows of Hl are a subset of the 
sums of r+ 2 rows of Hl. Moreover, sums of up to l- 1 rows of Rl provide 2l- 1 l-tuples, 
and the remaining l-tuple can be obtained from one of their complements. Therefore, a 
more compact Al can be constructed as 

{ ... , ... ,

... , ... }

A h h h h

h h h h

l i i i i

i i i i

l l

l l

0 3 0 2
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where h denotes the complement of h. Then, the size of Al  is

2A
n k

l

n k

l2 1
l #

-

-
+

-

-
c cc m mm

and the inequality is due to the possibility of repeating vectors in Equation (9). If the 
LBC used to generate Al  has a minimum distance that achieves the Singleton bound, 
d = n- k+ 1, the LBC is a maximum distance separable (MDS) code and the derived 
set A is compact. The encoding failure rate of XOR coding with Al given ls stuck-at er-
rors requires combinatorial computations except when l = 1 and can be obtained by 
numerical simulation. In the case of l = 1, we have Pe,X,l= 1 = 1 - 1/2ls- 1. We can gen-
erate an example Al based on the parity check matrix of an extended Hamming code 

n = 1024,k = 1013,d = 4^ h. The XOR candidates can be obtained with 2A1 = , 22A2 =

and 110A3 = , and would require 1, 5, and 7 bits, respectively, to represent the reprocess-
ing information index j. For comparison, the LFSR coding scheme with similar param-
eters can be realized with the feedback polynomial X1024 + X1015 + X1002 + X1001 + 1 and 
v A,max l l= . 

, 

(9)

, 
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(11)

C. Concatenation with BCH to Correct Soft Errors

In Sections III.A and III.B, we simplified the analysis of CSIE without considering the 
possibility of soft errors. In this section, we combine CSIE with an outer ECC to account 
for both permanent and temporary errors. We use binary BCH codes as outer codes [19] 
because BCH code designs can easily be adapted to different code rates. A t-error-correcting 
BCH code can be shortened by b bits in order to record in those b bits either the number 
of shifts used in the LFSR scheme or the index of the XORed vector from the XOR scheme. 
For example, a (1023,983) BCH code with t = 4 can be shortened to (1023,982), (1023,978), 
or (1023,976) and be combined with CSIE to handle 1, 2, or 3 stuck-at errors, respectively. 
In order to evaluate the concatenated performance, the probability of the number le of 
residual errors after CSIE, denoted by |Pr l le s^ h, needed to be simulated for all ls stuck-at  
errors. Then, the block error rate for the concatenated code could be computed as

| |Pr PrP l l l l|blker l r s e s

l t ll >

s

e rr

=
-

^ ^h h//

where lr is the number of soft errors in a codeword, and soft errors in reprocessing the in-
formation were ignored. 

IV. Numerical Simulations

We evaluated the performance of CSIE schemes on a channel model that included both 
temporary and permanent errors [4]. Although the difference between Cmax and Cmin shown 
in Figure 5 was less than 0.01 information bits per cell at qT = 10-3, the actual performance 
gap for finite-length codewords may be larger. To illustrate this, we ran simulations using 
the parameters n = 1024, qT = 10-3, and pT = 0. Figure 6 shows the block error rates of 
BCH codes with and without using side information at the encoder. CSIE, together with 
random binning, either led to a #10-8 lower block error rate at a coding overhead of 

hl + 0.01 or was able to store 0.07 bits more information per cell at a block error rate of 10-9 
compared to when no side information was used. Shannon limits of capacity when no side 
information is used (1 - Cmin) and for CSIE (1 - Cenc = 1 - Cmax) are also shown as vertical 
dash-dot and solid lines, respectively. Since it is impractical to obtain all of the coding gains 
offered by random binning, we evaluated the performance of both LFSR- and XOR-based 
CSIE schemes in Section IV.A when complete side information was available at the encoder, 
and in Section IV.B when only partial side information was produced by an ECC decoder 
during scrubbing.

A. Coding with Complete Side Information at the Encoder

We plotted in Figure 7 the performance of both the XOR scheme based on an extended 
n = 1024,k = 1013,d = 4^ h Hamming code and the LFSR scheme when complete channel 

side information was available at the encoder in the presence of only hard errors (qT = 10-3 
and pT = 0). The y-axis indicates the block error rate and the x-axis represents the coding 
overhead hl = log2 Al^ h/n. In our simulations, we included the possibility of stuck-at errors 
occurring at the indexing bits. By using CSIE and a small overhead + 7 # 10-3, the block 
error rate was reduced to + 10-3 compared to the rate when no side information was used. 
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Figure 7. Simulation of CSIE in a channel with only hard errors, qT = 10–3 and pT = 0. Block error rates are evalu-

ated as a function of coding overhead with the length of codeword selected to be n = 1024.

Figure 6. Block error rates of coding with and without side information using finite-length codeword, n = 1024. 

Hard and soft error probabilities are fixed at qT = 10–3  and pT = 0 , respectively.
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We proceeded to evaluate the concatenation of CSIE and an outer t = 4 error-correcting 
(1023,983) BCH code in the presence of both hard and soft errors (qT = 10-3). To simplify 
analysis, we ignored the possibility of soft errors occurring in the reprocessing index and 
plotted the error rate performance in Figure 8. For comparison, the error rates obtained by 
using the (1023,983) BCH code and the t = 5 error-correcting (1023,973) BCH code, assum-
ing that the stuck-at bits were treated as erasures, are also plotted. CSIE outperforms even a 
lower-rate BCH code with erasure decoding (solid ×) that required either additional memory 
space for tracking erasures or latency-intensive memory cell tests during decoding.

Figure 8. Simulation of ECC concatenated with CSIE in a channel with hard (qT = 10–3) and soft ( pT = 10–6)  

errors. Performances of a t = 4 error-correcting (1023,983) BCH code and a t = 5 error-correcting (1023,973)  

BCH code without CSIE but with erasure of the hard errors are provided for comparisons.
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C. Coding with Partial Side Information at the Encoder in Memory-Scrubbing Channels

Comparing the input and the output of an ECC decoder after a memory scrub produces 
partial side information that still could be beneficial in CSIE. The information generated by 
the decoder is not complete because not every corrected symbol is a stuck-at error, and not 
every stuck-at error is found. However, the impact of unidentified hard errors is dominant 
and coding with partial side information correcting more than one stuck-at error becomes 
inefficient. We therefore only analyzed the performance of the XOR CSIE scheme with 
partial side information for the case of one stuck-at bit. In this case, the block error rate is 
computed as

| | | |Pr Pr Pr PrP l l l l l l l l l|blker r s si s ei si eu s si

l t l llll

l

eu ei reisir

s = -
2 - -

^ ^ ^ ^ch h h hm////

where lsi is the number of stuck-at errors identified by the ECC decoder and lei and leu are 
the numbers of residual errors from identified lsi and unidentified ls- lsi stuck-at errors, 
respectively. For each scrubbing interval with duration Ts, the ECC decoder provides partial 

(12)
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Figure 9. Simulation of a (1024,983) BCH code concatenated with coding with partial side information.  

The partial side information is derived from the BCH decoder. The hard and soft error rates are 

 mh = ms = 10–6 and the scrubbing interval is 2 hr.

(13)

side information back to the encoder if lei+ leu+ lr  at the previous interval is within the 
correction bound of the ECC. The error probabilities of the mth scrubbing interval can then 
be derived from Equations (1) and (2) as qm = 1 - e- m h mTs and pm = 1 - (e- m h Ts + e-2m s Ts) /2 
where hard errors that occurred in the mth scrubbing interval are treated as soft errors with 
probability 1/2. The block error rate of the concatenated coding at mth scrubbing can be 
represented as

P P P P1
( ) ( ) ( )

| ,blker blker blker blker
m m m

l l
1 1

( ) ( )
s
m

r
m= + -

- -^ h

where ls(m) and lr(m) are the numbers of stuck-at and soft errors given by error probabilities 

qm and pm, respectively, and Pblker
(0)

= 0. We plotted the results of memory-scrubbing simula-
tions using BCH codes and coding with partial side information in Figure 9. Each XOR and 
LFSR CSIE scheme was combined with a t = 4 error-correcting (1024,983) BCH code and 
evaluated with the channel parameters set as m h = m s = 10

-6  errors/bit/day and a scrubbing 
interval of Ts = 2 hr. We allowed no more than one stuck-at error. We also included in the 
figure for comparison the BCH-only performance on the channel model developed in [5] 
with and without erasing all of the stuck-at errors. CSIE schemes with partial side informa-
tion provide improved block error rate performance over the BCH code without side infor-
mation and show favorable performance trade-offs compared to the BCH code with erasure 
decoding that requires a priori knowledge of the stuck-at error locations.

, 
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V. Summary

For memory devices targeted toward space applications, we refreshed the approach to 
handling both temporary errors induced by single-event upsets and stuck-at errors caused 
by device latch-ups. We were better able to capture the radiation-error behavior using a 
state-dependent channel model, and through capacity analysis showed the benefits of cod-
ing with CSIE on this channel. However, existing CSIE schemes were previously developed 
as information-theoretic concepts and are impractical. We proceeded to devise two CSIE 
schemes that can be readily implemented on a memory controller. We validated our ap-
proach through simulations and demonstrated that CSIE can provide improved reliability 
or higher storage capacity on memory devices in an extreme radiation environment. Since 
obtaining complete side information requires additional overhead in storage or computa-
tion, we also proposed a low-overhead alternative that uses partial information extracted 
from the decoder during memory scrubs and showed that using CSIE with partial side infor-
mation can be beneficial as well.
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